
(define (get-fundef [n : symbol] [fds : (listof FunDefC)]) : FunDefC

(cond

[(empty? fds) (error 'get-fundef "reference to undefined function")]

[(cons? fds) (cond

[(equal? n (fdC-name (first fds))) (first fds)]

[else (get-fundef n (rest fds))])]))

5.5 Oh Wait, There’s More!
Earlier, we gave the following type to subst:

; subst : ExprC * symbol * ExprC -> ExprC

Sticking to surface syntax for brevity, suppose we apply double to (+ 1 2). This
would substitute (+ 1 2) for each x, resulting in the following expression—(+ (+ 1

2) (+ 1 2))—for interpretation. Is this necessarily what we want?
When you learned algebra in school, you may have been taught to do this differ-

ently: first reduce the argument to an answer (in this case, 3), then substitute the answer
for the parameter. This notion of substitution might have the following type instead:

; subst : number * symbol * ExprC -> ExprC

Careful now: we can’t put raw numbers inside expressions, so we’d have to con-
stantly wrap the number in an invocation of numC. Thus, it would make sense for subst
to have a helper that it invokes after wrapping the first parameter. (In fact, our existing
subst would be a perfectly good candidate: because it accepts any ExprC in the first
parameter, it will certainly work just fine with a numC.) In fact, we don’t

even have
substitution quite
right! The version
of substitution we
have doesn’t scale
past this language
due to a subtle
problem known as
“name capture”.
Fixing substitution
is complex, subtle,
and an exciting
intellectual
endeavor, but it’s
not the direction I
want to go in here.
We’ll instead
sidestep this
problem in this
book. If you’re
interested, however,
read about the
lambda calculus,
which provides the
tools for defining
substitution
correctly.

Exercise

Modify your interpreter to substitute names with answers, not expressions.

We’ve actually stumbled on a profound distinction in programming languages. The
act of evaluating arguments before substituting them in functions is called eager appli-
cation, while that of deferring evaluation is called lazy—and has some variations. For
now, we will actually prefer the eager semantics, because this is what most mainstream
languages adopt. Later [REF], we will return to talking about the lazy application
semantics and its implications.

6 From Substitution to Environments
Though we have a working definition of functions, you may feel a slight unease about
it. When the interpreter sees an identifier, you might have had a sense that it needs to
“look it up”. Not only did it not look up anything, we defined its behavior to be an
error! While absolutely correct, this is also a little surprising. More importantly, we
write interpreters to understand and explain languages, and this implementation might
strike you as not doing that, because it doesn’t match our intuition.

25



There’s another difficulty with using substitution, which is the number of times we
traverse the source program. It would be nice to have to traverse only those parts of the
program that are actually evaluated, and then, only when necessary. But substitution
traverses everything—unvisited branches of conditionals, for instance—and forces the
program to be traversed once for substitution and once again for interpretation.

Exercise

Does substitution have implications for the time complexity of evaluation?

There’s yet another problem with substitution, which is that it is defined in terms of
representations of the program source. Obviously, our interpreter has and needs access
to the source, to interpret it. However, other implementations—such as compilers—
have no need to store it for that purpose. It would be nice to employ a mechanism that Compilers might

store versions of or
information about
the source for other
reasons, such as
reporting runtime
errors, and JITs may
need it to
re-compile on
demand.

is more portable across implementation strategies.

6.1 Introducing the Environment
The intuition that addresses the first concern is to have the interpreter “look up” an
identifier in some sort of directory. The intuition that addresses the second concern is
to defer the substitution. Fortunately, these converge nicely in a way that also addresses
the third. The directory records the intent to substitute, without actually rewriting the
program source; by recording the intent, rather than substituting immediately, we can
defer substitution; and the resulting data structure, which is called an environment,
avoids the need for source-to-source rewriting and maps nicely to low-level machine
representations. Each name association in the environment is called a binding.

Observe carefully that what we are changing is the implementation strategy for the
programming language, not the language itself. Therefore, none of our datatypes for
representing programs should change, nor even should the answers that the interpreter
provides. As a result, we should think of the previous interpreter as a “reference imple-
mentation” that the one we’re about to write should match. Indeed, we should create a
generator that creates lots of tests, runs them through both interpreters, and makes sure
their answers are the same. Ideally, we should prove that the two interpreters behave
the same, which is a good topic for advanced study. One subtlety is in

defining precisely
what “the same”
means, especially
with regards to
failure.

Let’s first define our environment data structure. An environment is a list of pairs
of names associated with...what?

Do Now!

A natural question to ask here might be what the environment maps names
to. But a better, more fundamental, question is: How to determine the
answer to the “natural” question?

Remember that our environment was created to defer substitutions. Therefore, the
answer lies in substitution. We discussed earlier (section 5.5) that we want substitu-
tion to map names to answers, corresponding to an eager function application strategy.
Therefore, the environment should map names to answers.

(define-type Binding

[bind (name : symbol) (val : number)])

26



(define-type-alias Env (listof Binding))

(define mt-env empty)

(define extend-env cons)

6.2 Interpreting with Environments
Now we can tackle the interpreter. One case is easy, but we should revisit all the others:

<*> ::=

(define (interp [expr : ExprC] [env : Env] [fds : (listof FunDefC)]) : number

(type-case ExprC expr

[numC (n) n]

<idC-case>
<appC-case>
<plusC/multC-case>))

The arithmetic operations are easiest. Recall that before, the interpreter recurred
without performing any new substitutions. As a result, there are no new deferred sub-
stitutions to perform either, which means the environment does not change:

<plusC/multC-case> ::=

[plusC (l r) (+ (interp l env fds) (interp r env fds))]

[multC (l r) (* (interp l env fds) (interp r env fds))]

Now let’s handle identifiers. Clearly, encountering an identifier is no longer an
error: this was the very motivation for this change. Instead, we must look up its value
in the directory:

<idC-case> ::=

[idC (n) (lookup n env)]

Do Now!

Implement lookup.

Finally, application. Observe that in the substitution interpreter, the only case that
caused new substitutions to occur was application. Therefore, this should be the case
that constructs bindings. Let’s first extract the function definition, just as before:

<appC-case> ::=

[appC (f a) (local ([define fd (get-fundef f fds)])

<appC-interp>)]

Previously, we substituted, then interpreted. Because we have no substitution step,
we can proceed with interpretation, so long as we record the deferral of substitution.

<appC-interp> ::=

27



(interp (fdC-body fd)

<appC-interp-bind-in-env>
fds)

That is, the set of function definitions remains unchanged; we’re interpreting the
body of the function, as before; but we have to do it in an environment that binds the
formal parameter. Let’s now define that binding process:

<appC-interp-bind-in-env-take-1> ::=

(extend-env (bind (fdC-arg fd)

(interp a env fds))

env)

the name being bound is the formal parameter (the same name that was substituted
for, before). It is bound to the result of interpreting the argument (because we’ve
decided on an eager application semantics). And finally, this extends the environment
we already have. Type-checking this helps to make sure we got all the little pieces
right.

Once we have a definition for lookup, we’d have a full interpreter. So here’s one:

(define (lookup [for : symbol] [env : Env]) : number

(cond

[(empty? env) (error 'lookup "name not found")]

[else (cond

[(symbol=? for (bind-name (first env)))

(bind-val (first env))]

[else (lookup for (rest env))])]))

Observe that looking up a free identifier still produces an error, but it has moved
from the interpreter—which is by itself unable to determine whether or not an identifier
is free—to lookup, which determines this based on the content of the environment.

Now we have a full interpreter. You should of course test it make sure it works as
you’d expect. For instance, these tests pass:

(test (interp (plusC (numC 10) (appC 'const5 (numC 10)))

mt-env

(list (fdC 'const5 '_ (numC 5))))

15)

(test (interp (plusC (numC 10) (appC 'double (plusC (numC 1) (numC 2))))

mt-env

(list (fdC 'double 'x (plusC (idC 'x) (idC 'x)))))

16)

(test (interp (plusC (numC 10) (appC 'quadruple (plusC (numC 1) (numC 2))))

mt-env

(list (fdC 'quadruple 'x (appC 'double (appC 'double (idC 'x))))

(fdC 'double 'x (plusC (idC 'x) (idC 'x)))))

22)

28



So we’re done, right?
Do Now!

Spot the bug.

6.3 Deferring Correctly
Here’s another test:

(interp (appC 'f1 (numC 3))

mt-env

(list (fdC 'f1 'x (appC 'f2 (numC 4)))

(fdC 'f2 'y (plusC (idC 'x) (idC 'y)))))

In our interpreter, this evaluates to 7. Should it?
Translated into Racket, this test corresponds to the following two definitions and

expression:

(define (f1 x) (f2 4))

(define (f2 y) (+ x y))

(f1 3)

What should this produce? (f1 3) substitutes x with 3 in the body of f1, which
then invokes (f2 4). But notably, in f2, the identifier x is not bound! Sure enough,
Racket will produce an error.

In fact, so will our substitution-based interpreter!
Why does the substitution process result in an error? It’s because, when we replace

the representation of x with the representation of 3 in the representation of f1, we do so
in f1 only. (Obviously: x is f1’s parameter; even if another function had a parameter This “the

representation of” is
getting a little
annoying, isn’t it?
Therefore, I’ll stop
saying that, but do
make sure you
understand why I
had to say it. It’s an
important bit of
pedantry.

named x, that’s a different x.) Thus, when we get to evaluating the body of f2, its x
hasn’t been substituted, resulting in the error.

What went wrong when we switched to environments? Watch carefully: this is
subtle. We can focus on applications, because only they affect the environment. When
we substituted the formal for the value of the actual, we did so by extending the current
environment. In terms of our example, we asked the interpreter to substitute not only
f2’s substitution in f2’s body, but also the current ones (those for the caller, f1), and
indeed all past ones as well. That is, the environment only grows; it never shrinks.

Because we agreed that environments are only an alternate implementation strategy
for substitution—and in particular, that the language’s meaning should not change—
we have to alter the interpreter. Concretely, we should not ask it to carry around all past
deferred substitution requests, but instead make it start afresh for every new function,
just as the substitution-based interpreter does. This is an easy change:

<appC-interp-bind-in-env> ::=

(extend-env (bind (fdC-arg fd)

(interp a env fds))

mt-env)

Now we have truly reproduced the behavior of the substitution interpreter. In case you’re
wondering how to
write a test case that
catches errors, look
up test/exn.

29



6.4 Scope
The broken environment interpreter above implements what is known as dynamic scope.
This means the environment accumulates bindings as the program executes. As a re-
sult, whether an identifier is even bound depends on the history of program execution.
We should regard this unambiguously as a flaw of programming language design. It
adversely affects all tools that read and process programs: compilers, IDEs, and hu-
mans.

In contrast, substitution—and environments, done correctly—give us lexical scope
or static scope. “Lexical” in this context means “as determined from the source pro-
gram”, while “static” in computer science means “without running the program”, so
these are appealing to the same intuition. When we examine an identifier, we want to
know two things: (1) Is it bound? (2) If so, where? By “where” we mean: if there are
multiple bindings for the same name, which one governs this identifier? Put differently,
which one’s substitution will give a value to this identifier? In general, these questions
cannot be answered statically in a dynamically-scoped language: so your IDE, for in-
stance, cannot overlay arrows to show you this information (as DrRacket does). Thus, A different way to

think about it is that
in a
dynamically-scoped
language, the
answer to these
questions is the
same for all
identifiers, and it
simply refers to the
dynamic
environment. In
other words, it
provides no useful
information.

even though the rules of scope become more complex as the space of names becomes
richer (e.g., objects, threads, etc.), we should always strive to preserve the spirit of
static scoping.

6.4.1 How Bad Is It?

You might look at our running example and wonder whether we’re creating a tempest
in a teapot. In return, you should consider two situations:

1. To understand the binding structure of your program, you may need to look at
the whole program. No matter how much you’ve decomposed your program into
small, understandable fragments, it doesn’t matter if you have a free identifier
anywhere.

2. Understanding the binding structure is not only a function of the size of the pro-
gram but also of the complexity of its control flow. Imagine an interactive pro-
gram with numerous callbacks; you’d have to track through every one of them,
too, to know which binding governs an identifier.

Need a little more of a nudge? Let’s replace the expression of our example program
with this one:

(if (moon-visible?)

(f1 10)

(f2 10))

Suppose moon-visible? is a function that presumably evaluates to false on new-moon
nights, and true at other times. Then, this program will evaluate to an answer except
on new-moon nights, when it will fail with an unbound identifier error.

Exercise

What happens on cloudy nights?

30



6.4.2 The Top-Level Scope

Matters become more complex when we contemplate top-level definitions in many lan-
guages. For instance, some versions of Scheme (which is a paragon of lexical scoping)
allow you to write this:

(define y 1)

(define (f x) (+ x y))

which seems to pretty clearly suggest where the y in the body of f will come from,
except:

(define y 1)

(define (f x) (+ x y))

(define y 2)

is legal and (f 10) produces 12. Wait, you might think, always take the last one! But:

(define y 1)

(define f (let ((z y)) (lambda (x) (+ x y z))))

(define y 2)

Here, z is bound to the first value of y whereas the inner y is bound to the second
value. There is actually a valid explanation of this behavior in terms of lexical scope, Most “scripting”

languages exhibit
similar problems.
As a result, on the
Web you will find
enormous confusion
about whether a
certain language is
statically- or
dynamically-
scoped, when in
fact readers are
comparing behavior
inside functions
(often static)
against the top-level
(usually dynamic).
Beware!

but it can become convoluted, and perhaps a more sensible option is to prevent such
redefinition. Racket does precisely this, thereby offering the convenience of a top-level
without its pain.

6.5 Exposing the Environment
If we were building the implementation for others to use, it would be wise and a cour-
tesy for the exported interpreter to take only an expression and list of function defini-
tions, and invoke our defined interp with the empty environment. This both spares
users an implementation detail, and avoids the use of an interpreter with an incorrect
environment. In some contexts, however, it can be useful to expose the environment
parameter. For instance, the environment can represent a set of pre-defined bindings:
e.g., if the language wishes to provide pi automatically bound to 3.2 (in Indiana).

7 Functions Anywhere
The introduction to the Scheme programming language definition establishes this de-
sign principle:

Programming languages should be designed not by piling feature on top
of feature, but by removing the weaknesses and restrictions that make ad-
ditional features appear necessary. [REF]

31


